
 Peluso 1

 Mobile Robotics Documentation

 Dan Carpenter and Elias Peluso

 Millersville University

 AENG 467: Mobile Robotics

 Dr. John Wright

 December 10, 2021

 Peluso 2

 Abstract

 Mobile robotics is an area within applied engineering that is distinguishable from other

 applications of robotics. It involves applying engineering, design, and coding practices to

 creating a machine that can solve a physical problem. With a prodigious amount of

 interconnected parts and environmental variables, the work typically involves fine-tuning and

 experimenting with the code, components, and design. This essay describes in detail the given

 task for a mobile robotics competition, including the results and conclusions. The parts listing,

 flow chart, final code, and component tech sheets are included as appendices.

 Peluso 3

 Table of Contents

 Project Description ………………………….………………..…………………………..…Page 4

 Problem Statement………….……….………………..…………………………..…Page 4

 Impact………………………….…………….………..…………………………..…Page 5

 Objectives ………………………….………………..………..…………………..…Page 6

 Procedure ………………………….………………..………..…………………..…Page 9

 Results ………………………….………………..……..……..………………….……..…Page 12

 Conclusion ………………………….………………..…………………………….………Page 15

 Appendices ……..………………………….………………..…………………..…………Page 17

 Appendix A: Parts Listing ……….….………………..……………………………Page 17

 Appendix B: Process Flow Chart/Algorithm ….……..…………………..……..…Page 20

 Appendix C: Complete Programming Code with Comments …..…………..…..…Page 26

 Appendix D: Fire Contest Rules Official Document………..…..…………..…..…Page 36

 Appendix E: Component Tech Sheets …………..….…..……...…………..…..…..Page 42

 Peluso 4

 Project Description

 Problem Statement

 This research and development project involves creating a robot that can function in a

 simulation of a real-world environment to complete a specific task. As outlined in the “Fire

 Contest Rules” document (see Appendix D), the objective of this project was to create a

 firefighting mobile robot that navigates through a maze (a simulation of a house) to extinguish a

 candle. This general goal is relatively simple, but the challenge has underlying complexity that

 adds additional problems to the statement.

 Peluso 5

 Some other factors that increase complexity are the components (see Appendix A), the trial

 conditions (see Appendix D) and environmental conditions. First of all, it is noteworthy that this

 challenge requires participants to program at least ten unique electronic components (see

 Appendix A). The fact that all of these components must work together in the same code adds a

 problem to the challenge: stable and reliable code. Second, the conditions of each trial run are

 randomized each round, adding another problem. Because conditions such as candle location,

 candle mat size, and occupant location (see Appendix D) are uncertain, the robot must be

 programmed to function under this uncertainty. Third, environmental conditions such as

 lighting, discoloration in the maze, background objects, and obstacles in the maze may disrupt

 the intended function of sensors. Therefore, these problems must be accounted for and tested

 prior to the competition.

 Impact

 The purpose of this project is to provide students with exposure to a simulation of a real

 “on-the-field” robotics challenge. As a “senior-level” and “capstone” robotics course, AENG

 467 requires the application of a great amount of knowledge from various areas of applied

 engineering. These areas include design, coding, testing, engineering, refining, critical thinking,

 Peluso 6

 and teamwork skills. As explained in the problem statement, the explicit goal of this project is to

 create a robot that functions in a simulation of a real-world house fire environment. This reflects

 the global purpose of this course: to prepare students for real-world robotics experiences by

 creating a hands-on, independent work environment.

 Objectives

 As mentioned previously, the objective of this project was to create a firefighting mobile

 robot that navigates through a maze (a simulation of a house) to extinguish a candle. The official

 contest rules (see Appendix D) explain the entire competition very clearly:

 “The main challenge of this contest is to build an autonomous robot using a Teensy

 Microcontroller that can find its way through an arena that represents a model house, find a lit

 candle that represents a fire in the house, and extinguish the fire in the shortest time. This task

 simulates the real-world operation of an autonomous robot performing a fire protection function

 in a real house. The goal of the contest is to advance robot technology and knowledge while

 using robotics as an educational tool. The contest shall also teach students about the limitations

 of technology, and how to deal with complex control problems and situations” (Wright, 2021,

 page 2).

 Peluso 7

 Within this general end goal of creating a firefighting robot, there are a few

 “checkpoints” the robot must pass to ensure it will succeed. The first was for the robot to

 autonomously drive down one of the maze corridors and turn right. This required the

 programming and engineering of both servos and at least one type of vision sensor (see

 Appendix A). The second checkpoint required the robot to autonomously drive down a corridor

 and into one of the “rooms,” stopping on the white line at the entrance. This added the need to

 implement components such as the line tracking sensor, and possibly additional vision sensors

 (see Appendix A). Three additional functions required of the robot were to detect whether or not

 a flame is present (utilizing the flame detection sensor), determine whether a green color, a red

 color, or no color is present (utilizing the color camera), and to display messages on the LCD

 screen (see Appendix A). The third checkpoint compiled all previous tasks and added the final

 step: if the robot detects a flame after stopping on a white line, it must drive towards the flame

 and extinguish it. This required the use of any approved flame extinguishing medium, but the

 provided electric fan was used by all participants (see Appendix A). Finally, the final

 competition entailed the use of all previously established rules, but the conditions of the maze

 were completely randomized.

 Peluso 8

 With all this in mind, it can be inferred that at least ten components will need to be

 utilized in the competition. The objectives of this project can be broken down into two specific

 areas: engineering and coding. The “engineering” portion of this project is very much dictated

 by the limitations of the contest rules (see Appendix D) and the provided components (see

 Appendix A). The first objective of the process was to build a reliable and robust robot design.

 In order for the robot to be effective, the components must be mounted in a way that makes sense

 given the previously established rules of the competition. For example, the line sensor’s

 receptacle must be pointed such that it will read the white lines on the ground, and the flame

 sensor must be mounted at a level at which it will reliably detect a flame. So, to summarize, the

 physical objectives entailed the creation of an effective robot design.

 The second area of objectives is coding. Using the Arduino coding platform, participants

 were required to write C++ code for the robot throughout (see Appendix C). As mentioned

 previously, code must be created to provide instructions to all components and make them work

 together consistently and in a way that makes sense given the competition criteria. For example,

 the line sensor must be labeled as an input, the servos must be labeled as outputs, and

 Peluso 9

 participants must create code that instructs the servos to stop once a line is detected. All of these

 decisions are clearly laid out in the code flowchart (see Appendix B). Additionally, the color

 detection camera component was required to be programmed independently using MicroPython

 (see Appendix A). To summarize, the main objective in terms of coding was to increase

 reliability as much as possible.

 Procedure

 The process of actually carrying out this objective took the form of a free and

 independent project. AENG 467 class sessions were almost entirely unstructured, requiring

 teams to each plan their own course of action. A typical class session primarily involved testing

 various codes on the robot throughout, occasionally making physical adjustments when needed.

 At the beginning of the semester, students usually tested robots to verify that the code was

 correct and that the components were responding as intended. Toward the end of the semester,

 this trend shifted toward testing the robot in the actual maze and refining code that was already

 working, but was not yet perfect.

 Now, the exact intended sequence of events for Dan and Elias’s robot will be explained

 (see Appendix B). The robot was programmed to navigate through the maze and enter a

 sequence of rooms in a specific order. This plan was accomplished by starting the robot facing

 straight towards the far end of the maze so it would drive down the main hallway. By facing this

 way, it was possible for the robot to reliably enter three of the rooms by only making right turns

 (with the guidance of the sonar on the right side of the robot).

 The robot was activated by pressing the “start” button. Upon pressing this button, the

 robot turned in place on the start pad, scanning the color camera to see if either red or green was

 detected. After this, the robot centered itself it drove straight down the main hallway, using the

 Peluso 10

 right sonar to remain in line with the right wall. All the while in this main code, the robot was

 scanning for a line, scanning for red or green, and scanning for IR input (if it approaches a wall

 head on it will back up) (see Appendix B).

 After the robot had traveled to the four-way intersection, it would turn right into the next

 hallway. After that it would find room #2 by turning right again. If the flame was not in that

 room the robot would back out and take a right turn and head back down the hallway from where

 it came from, turning right towards the far end of the main hallway. Then the robot would turn

 right again and find the second room. If the candle was not in this room, the robot would back

 out and turn right again. Then it would go straight down the hallway and immediately turn right

 to find the third room.

 Now, the problem was how to program the robot to enter room #1 (the room in the

 middle of the maze), because it was not possible to enter that room using only right turns. If the

 robot approaches from the far side of the maze, a left turn is required to enter room #1. Since the

 left sonar needed to be activated at that point, a “room counter” was implemented into the code.

 The best way to do this was by using the line sensor because it was already supposed to stop and

 see the line before entering the room. Each time that the line sensor saw a line it added to the

 Peluso 11

 counter and stored it into an integer variable. By doing this the robot would know how many

 rooms it found in the maze and where it was in the ordered sequence of rooms. Once it found the

 third room by continuously turning right, the room variable would then be 3. After that, we

 programmed the code to go into an if statement when the variable was greater than 2. So, our

 robot would then leave the third room by turning left to go straight down the main hallway (see

 Appendix B). Then, it would turn right and immediately turn left to get into the last room. So in

 conclusion, the robot was programmed to approach the rooms in a predetermined sequence, first

 by only making right turns, then by activating the left sonar for the final room.

 If the robot did, in fact, detect a flame in one of the rooms, it would drive forward to enter

 the room. It would follow a similar pattern of using a sonar to drive alongside the wall, only this

 time it would use the left sonar to stay alongside the left wall when it was in one of the four

 rooms. The fan and the solo flame sensor were mounted on the back left side of the robot, so

 once a flame was detected next to the fan, the fan would turn on to extinguish it.

 Peluso 12

 Results

 The final competition involved three attempts for every participating team. As

 mentioned before, the maze conditions were randomized each run, so a robot needed to be

 reliable and versatile in order to be successful.

 Our first run was successful because our robot was able to navigate through the maze and

 extinguish the candle in the second room. In the beginning, the robot did not detect the Flash (the

 “red” occupant with the color camera), but it drove around the Flash and avoided crashing into

 him. This was acceptable because the robot did not misidentify the Flash and did not touch him

 (touching an “occupant” is grounds for disqualification; see Appendix D). The robot drove down

 the hallway and successfully detected the Green Lantern, who “evacuated.” The robot then

 turned right to go to the first room. The candle was not in the first room, so the robot left and

 successfully drove into the second room. While entering the second room, the robot turned too

 sharply and crashed into the entrance of the second room. After being stuck against the wall for

 about 20 seconds, our robot moved a bit, but then unfortunately got caught on the right sonar. It

 was at this moment that the contest judge created a change to the rules that applied to the

 Peluso 13

 remainder of the rounds: the robot will not be disqualified for touching a wall for more than three

 seconds. Our robot eventually detected the candle in the room and wiggled free from the

 entrance. It entered its flame tracking subroutine code inside the room and was able to extinguish

 the candle. This run was a huge success.

 For the second run the candle was placed in the fourth room. This room was the most

 difficult room to get to because it required our line sensors to properly count the number of

 rooms in sequence so the code could be changed appropriately for this fourth room. Due to time

 constraints, we unfortunately did not have a chance to test our robot’s ability to enter that room.

 We were instead making adjustments to our code to improve reliability in entering into the first

 room. We were not certain the robot had the ability to enter the other three rooms, but at the end

 of the day on Monday (the day before the competition), our robot was able to get into the first

 three rooms and that was a huge success. So, we added code after the final session of Monday to

 attempt at getting into the fourth room, but we did not have a chance at testing it in the maze.

 Our second trial for the competition was our chance to test whether or not the robot could

 enter room #1. At the start, the camera successfully saw both superheroes in the hallway and the

 robot headed towards the second room. While traveling to the second room the line sensor was

 triggered by one of the dots in the middle of the hallway, which unfortunately disrupted our room

 Peluso 14

 counter. The robot left the second room, but thought it was leaving the third room, so it turned

 left and was not able to recover from that misstep. Had the robot not mistakenly detected the dots

 in the hallway, the code could have worked because the robot did, in fact, change its routine after

 the third line scan like we had hoped in our program.

 The candle was placed in room #2 for our third run (the first room in our sequence).

 Much of the class was expecting our robot to easily succeed in this run and put out the candle

 because room #2 was, overall, the easiest room for anyone’s robot to reliably enter. We were,

 however, very nervous about this run because the color camera was suddenly having white

 balance issues that were not present since the last run. It was confusing and concerning because

 the code did not change since the last run. Since we unfortunately were unable to test our robot

 in the maze between runs, we could not properly diagnose this issue, so we had to simply attempt

 the maze as is. As soon as the robot was activated in the maze, however, it did not detect the

 Flash, just as we had feared. It crashed into the Flash and was disqualified. It was a shame,

 because we could have fixed the robot’s thresholds in five minutes if given the opportunity to test

 in the maze again.

 Had our robot succeeded 2/3 runs, we would have won the competition. Instead we came

 in second place for the class because we were one of only two teams to have successfully

 completed a run, and the other team was approximately 40 seconds faster.

 Peluso 15

 Conclusion

 The purpose of this project was to gain “real-world” experience in robotics by researching

 and developing a robot to function in a simulation of a real-world environment. This semester

 project gave us hands-on exposure to programming the Arduino Teeny Microcontroller with

 Arduino C++. We also learned how to program the OpenMV camera to detect colors using

 MicroPython (see Appendix A). To accomplish this we had to integrate the two programming

 platforms together, so they would work together.

 Even though everyone had made terrific progress and put a great amount of effort into

 their robots for this project, it is safe to say that everyone was disappointed with the results of the

 competition. As mentioned previously, there were only two successful runs out of the entire

 class. For our team in particular, we were satisfied with the result of the first run, and we were

 content with the robot failing the second run because the assigned room was untested. However,

 it was saddening that the spontaneous color detection issues cost us the candle in the third run. If

 the robot had detected the Flash up close in the third run, it would not have been disqualified.

 We did not realize the camera was having trouble detecting the Flash up close until it was

 too late. While working with the camera this semester we knew that the distances were a

 problem. This was an issue we were unable to solve and once it cost us the competition, it was

 disappointing. If we would have taken more time with the camera in the maze we would have

 been able to improve the accuracy of the color detection. We didn’t realize how quickly we ran

 out of time at the end of the semester and there were so many things that still needed to be tested

 to remain competitive. We never got a chance to test getting into the fourth room because we still

 had our hands full working on improving reliability in the other three rooms. Before the maze

 Peluso 16

 closed last Monday we were able to get the robot to get into the first room very reliably and we

 knew it was able to jog around the maze and get into the other rooms.

 We enjoyed working on the robot and we learned a lot of terrific things in this class. This

 class is very practical and comprehensive because these skills are directly applicable to

 on-the-field work. If we were to take the class again, we would have spent more time on the

 color detection camera because it cost us the competition. If we had succeeded on our third run,

 that would have been spectacular because it would have been an accurate representation of how

 much we have grown as roboticists over the semester. All in all, we still did a great job with the

 robot and we will take the knowledge that we learned in this class and apply it to projects that we

 work on in the future.

 Peluso 17

 Appendices

 Appendix A: Parts Listing

 The above photo contains all components included in the project kit prior to the start of

 the project. The red numbers adjacent to each component correspond with the numbered

 component names in the following chart. If the stock image of the exact product is available

 from the corresponding website link, it is inserted into the chart. Following the pictured

 components are a list of non-pictured and miscellaneous components. Their numbers do not

 correspond to the above photo. If the exact component used is not available online but a similar

 product is available, this product will be linked instead.

 Peluso 18

 Peluso 19

 Peluso 20

 Appendix B: Process Flow Chart/Algorithm

 Peluso 21

 Peluso 22

 Peluso 23

 Peluso 24

 Peluso 25

 Peluso 26

 Peluso 27

 Appendix C: Complete Programming Code with Comments

 #include <HCSR04.h> // library for right (4-pin) sonar
 #include <Ping.h> // library for left (3-pin w/ LED) sonar

 HCSR04 SonarR(A4,A5); // Right sonar is in pin A4 and A5
 byte ServoL = 3; // left wheel is pin 3
 byte ServoR = 5; // right wheel is pin 5
 Ping ping = Ping(A3); // Left sonar is pin A3

 int SharpIR = A9; //SharpIR input is A9
 int valIR = 0; //set initial reading to 0

 #include<SoftwareSerial.h> // Library for LCD
 const int rxPin=7; // LCD is pin 7

 const int txPin=A1; //LCD is in pin A1. Messages are below:
 const char message1[]="Scanning for fire...";
 const char message2[]="FIRE DETECTED!!!";
 const char message3[]="No fire. Exiting.";
 const char message4[]="FLASH: PLEASE EVACUATE!";
 const char message5[]="GREEN LANTERN: GET OUT!";
 const char message6[]="EXTINGUISHING FLAME";
 const char message7[]="Color Scanning";
 const char message8[]="Exploring now";
 const char message9[]="Hooray!!!";
 SoftwareSerial mySerial= SoftwareSerial(rxPin, txPin); // LCD Setup

 int LineTrackS1 = A6; // Line Tracker 1 is pin A6
 int valLine1 = LOW; // Set initial value to "low"
 int LineTrackS2 = A7; // Line Tracker 2 is pin A7
 int valLine2 = LOW; // Set initial value to "low"

 // 5-Pin Flame Sensor Setup
 int FlameS1 = 11; // East pin is pin 11
 int valFlame1 = 0; // Set initial value to 0
 int FlameS2 = 10; // Northeast pin is pin 10
 int valFlame2 = 0; // Set initial value to 0
 int FlameS3 = 9; // North pin is pin 9
 int valFlame3 = 0; // Set initial value to 0
 int FlameS4 = 8; // Northwest pin is pin 8
 int valFlame4 = 0; // Set initial value to 0
 int FlameS5 = 7; // West pin is pin 7
 int valFlame5 = 0; // Set initial value to 0

 int FlameS0 = 2; // 1-Pin Flame Sensor Setup
 int valFlame0 = 0; // Set initial value to 0

 int CamR = 0; // Color Camera (RED value) is connected to pin 0
 int valColorR = 0; // Set initial value to 0

 int CamG = 1; // Color Camera (GREEN value) is connected to pin 1
 int valColorG = 0; // Set initial value to 0

 Peluso 28

 int Relay = 6; // Relay (fan) input is in pin 6.
 .
 int StartButton = 12; // Start button is in pin 12.
 int valStartButton = 0; // Set initial value to 0

 int f = 0; // This integer is used for Color Camera (RED). Once the robot sees the Flash once, it will stop scanning for red.
 int g = 0; // This integer is used for Color Camera (GREEN). Once the robot sees Green Lantern once, it will stop scanning for
 green.
 int e = 0; // This integer is used for the line sensor. After the robot sees the first three rooms, the left sonar will turn on so it can
 enter the fourth room.
 int c = 0; // This integer is used in the flamescan and flameexit code. The line sensor will only scan when the robot is in the drive
 code.

 void setup() {
 pinMode(ServoR, OUTPUT); // set right wheel servos as output
 pinMode(ServoL, OUTPUT); // set left wheel servos as output
 pinMode(SharpIR, INPUT); // Sharp IR input
 pinMode(13, OUTPUT); // Flame sensor output
 pinMode(LineTrackS1, INPUT); // Line Tracker 1 Input
 pinMode(LineTrackS2, INPUT); // Line Tracker 2 Input
 pinMode(FlameS1, INPUT); // East flame sensor input
 pinMode(FlameS2, INPUT); // Northeast flame sensor input
 pinMode(FlameS3, INPUT); // North flame sensor input
 pinMode(FlameS4, INPUT); // Northwest flame sensor input
 pinMode(FlameS5, INPUT); // West flame sensor input
 pinMode(FlameS0, INPUT); // 1-Pin flame sensor input
 pinMode(CamR, INPUT); // Color Camera (RED) Input
 pinMode(CamG, INPUT); // Color Camera (GREEN) Input
 pinMode(StartButton, INPUT); // Start Button Input
 pinMode(Relay, OUTPUT); // Relay (fan) setup
 Serial.begin(9600); // Set serial rate
 pinMode(txPin, OUTPUT); // LCD setup
 digitalWrite(txPin, LOW);
 mySerial.begin(9600); // Set serial rate for LCD
 mySerial.write(12); // Clear Screen
 delay(1000); // delay 1 second

 }

 void loop() {
 valStartButton = digitalRead(StartButton); // Read start button
 Serial.println(valStartButton); // print value to serial
 Serial.println("Waiting for button press"); // print message to serial
 if (valStartButton > 0){ // If the start button is pressed, the robot will turn left to scan for red, turn right to scan for green, turn
 left a bit to straighten out and scan both colors again, then drive forward.
 Serial.println("Here we go!"); // Print message to serial
 delay(150);

 mySerial.print(message7); // Print message to LCD: "Color Scanning"
 delay(50);
 analogWrite(ServoR, 150); // Turn left (right servo forward and left servo backward)
 analogWrite(ServoL, 150);
 delay(300);
 analogWrite(ServoR, 0); // Stop both servos
 analogWrite(ServoL, 0);
 valColorR=digitalRead(CamR); // Red Color Camera Read
 Serial.print("RED = ");
 Serial.println(valColorR); // Color Camera print to serial monitor
 valColorG=digitalRead(CamG); // Green Color Camera Read
 Serial.print("GREEN = ");
 Serial.println(valColorG); // Color Camera print to serial monitor
 ColorScan(); // Color Scan Subroutine
 delay(500);

 Peluso 29

 analogWrite(ServoR, 255); // turn right (right servo backward and left servo forward)
 analogWrite(ServoL, 255);
 delay(300);
 analogWrite(ServoR, 0);
 analogWrite(ServoL, 0);
 valColorR=digitalRead(CamR);
 Serial.print("RED = ");
 Serial.println(valColorR);
 ColorScan();
 delay(500);
 valColorG=digitalRead(CamG);
 Serial.print("GREEN = ");
 Serial.println(valColorG);
 ColorScan();
 delay(500);

 mySerial.print(message8); // Print to LCD: "Exploring Now"
 analogWrite(ServoR, 150); // turn left a bit
 analogWrite(ServoL, 150);
 delay(150);
 analogWrite(ServoR, 0);
 analogWrite(ServoL, 0);
 valColorR=digitalRead(CamR);
 Serial.print("RED = ");
 Serial.println(valColorR);
 valColorG=digitalRead(CamG);
 Serial.print("GREEN = ");
 Serial.println(valColorG);
 ColorScan();
 delay(500);

 analogWrite(ServoR, 150); // Drive forward (Both wheels forward)
 analogWrite(ServoL, 255);
 delay(2000); // This delay allows the bot to avoid accidentally reading the red and green dots by the starting line.
 Main(); // Main Program subroutine
 }
 }

 void Main() {
 for (int z = 0; z < 900000; z++){ // The main program loops virtually indefinitely
 c++; // Every time the robot is in the main code, the "c" value increases past 0, allowing the robot to scan the line sensor
 (becomes relevant later).

 analogWrite(ServoR, 150);
 analogWrite(ServoL, 255);
 LineSensor(); // Line Sensor rapid scan subroutine
 mySerial.write(12);
 valLine1=digitalRead(LineTrackS1); // Line Sensors read
 valLine2=digitalRead(LineTrackS2);
 SonarR.ReadEchoInches(); // Right sonar reading and print to serial
 Serial.print("Right Inches = ");
 Serial.println(SonarR.Inches);
 RightSonar(); // Right Sonar response subroutine

 ping.fire(); // left sonar reading and print to serial
 Serial.print(ping.inches());
 Serial.print("Left Inches = ");
 Serial.println();
 LeftSonar(); // Left sonar response subroutine
 LineSensor();

 Peluso 30

 valColorR=digitalRead(CamR); // Color camera readings and responses
 Serial.print("RED = ");
 Serial.println(valColorR);
 valColorG=digitalRead(CamG);
 Serial.print("GREEN = ");
 Serial.println(valColorG);
 ColorScan();

 valIR = digitalRead(SharpIR); //Sharp IR reading and print to serial
 Serial.print("IR = ");
 Serial.println(valIR);
 LineSensor();
 if (valIR > 0){ // If the sharp IR detects an object, the robot will back up and turn left.
 Serial.print("backing up and turning left");
 analogWrite(ServoR, 255); // Left and right servos backwards
 analogWrite(ServoL, 150);
 delay(400);
 analogWrite(ServoR, 150); // Right servo backwards, left servo stopped
 delay(200);

 }
 if (valLine1 > 0 || valLine2 > 0){ // If the robot sees a white line, it will stop and begin the flamescan and then the flameexit

 subroutines.
 if (c > 0){ // It will only scan for a line once it is in the main program.
 FlameScan(); // Flamescan subroutine
 FlameExit(); // Flameexit subroutine

 }
 }

 }
 }

 void FlameScan() { // Once the line sensor detects a line, the robot will stop on the line and scan for a flame three times.
 analogWrite(ServoR, 0);
 analogWrite(ServoL, 0);
 Serial.println("Room found"); // Print message to serial
 int c = 0; // Reset "c" to zero so the robot stops scanning for a line.
 e++; // This counter adds one value for every room the robot enters. This counter enables new code after the robot exits the

 third room.
 delay(250);
 mySerial.write(12);
 delay(250);
 mySerial.print(message1); // Print to LCD: scanning for fire
 Serial.println("Scanning for fire");
 delay(2000);
 Serial.println("___________________________"); // Print a line between values for visual organization on the serial
 valFlame1=digitalRead(FlameS1); // Flame sensors (All five, East through West) read value and print to serial
 Serial.print("East: ");
 Serial.println(valFlame1);
 valFlame2=digitalRead(FlameS2);
 Serial.print("NorthEast: ");
 Serial.println(valFlame2);
 valFlame3=digitalRead(FlameS3);
 Serial.print("North: ");
 Serial.println(valFlame3);
 valFlame4=digitalRead(FlameS4);
 Serial.print("NorthWest: ");
 Serial.println(valFlame4);
 valFlame5=digitalRead(FlameS5);
 Serial.print("West: ");
 Serial.println(valFlame5);
 delay(500);
 Serial.println("___________________________");
 valFlame1=digitalRead(FlameS1);

 Peluso 31

 Serial.print("East: ");
 Serial.println(valFlame1);
 valFlame2=digitalRead(FlameS2);
 Serial.print("NorthEast: ");
 Serial.println(valFlame2);
 valFlame3=digitalRead(FlameS3);
 Serial.print("North: ");
 Serial.println(valFlame3);
 valFlame4=digitalRead(FlameS4);
 Serial.print("NorthWest: ");
 Serial.println(valFlame4);
 valFlame5=digitalRead(FlameS5);
 Serial.print("West: ");
 Serial.println(valFlame5);
 delay(500);
 Serial.println("___________________________");
 valFlame1=digitalRead(FlameS1);
 Serial.print("East: ");
 Serial.println(valFlame1);
 valFlame2=digitalRead(FlameS2);
 Serial.print("NorthEast: ");
 Serial.println(valFlame2);
 valFlame3=digitalRead(FlameS3);
 Serial.print("North: ");
 Serial.println(valFlame3);
 valFlame4=digitalRead(FlameS4);
 Serial.print("NorthWest: ");
 Serial.println(valFlame4);
 valFlame5=digitalRead(FlameS5);
 Serial.print("West: ");
 Serial.println(valFlame5);
 delay(500);

 if (valFlame1 > 0){ // If a flame is detected on the East pin, the LCD will print a message, then the robot will enter the
 FlameTracking subroutine.

 mySerial.write(12);
 delay(250);
 mySerial.write(220); // LCD "A" note sound
 delay(250);
 mySerial.print(message2); // Print "fire detected" to LCD
 Serial.println("FIRE DETECTED");
 digitalWrite(13, HIGH); // light up pin 13
 delay(3000);
 FlameTracking(); // FlameTracking subroutine

 }
 if (valFlame2 > 0){ // If a flame is detected on the NorthEast pin, the LCD will print a message, then the robot will enter the

 FlameTracking subroutine.
 mySerial.write(12);
 delay(250);
 mySerial.write(220);
 delay(250);
 mySerial.print(message2);
 Serial.println("FIRE DETECTED");
 digitalWrite(13, HIGH);
 delay(3000);
 FlameTracking();

 }
 if (valFlame3 > 0){ // If a flame is detected on the North pin, the LCD will print a message, then the robot will enter the

 FlameTracking subroutine.
 mySerial.write(12);
 delay(250);
 mySerial.write(220);

 Peluso 32

 delay(250);
 mySerial.print(message2);
 Serial.println("FIRE DETECTED");
 digitalWrite(13, HIGH);
 delay(3000);
 FlameTracking();

 }
 if (valFlame4 > 0){ // If a flame is detected on the NorthWest pin, the LCD will print a message, then the robot will enter the

 FlameTracking subroutine.
 mySerial.write(12);
 delay(250);
 mySerial.write(220);
 delay(250);
 mySerial.print(message2);
 Serial.println("FIRE DETECTED");
 digitalWrite(13, HIGH);
 delay(3000);
 FlameTracking();

 }
 if (valFlame5 > 0){ // If a flame is detected on the West pin, the LCD will print a message, then the robot will enter the

 FlameTracking subroutine.
 mySerial.write(12);
 delay(250);
 mySerial.write(220);
 delay(250);
 mySerial.print(message2);
 Serial.println("FIRE DETECTED");
 digitalWrite(13, HIGH);
 delay(3000);
 FlameTracking();

 }
 }

 void RightSonar() { // Responses to right sonar readings subroutine
 valLine1=digitalRead(LineTrackS1); // Line Sensors read
 valLine2=digitalRead(LineTrackS2);

 if (SonarR.Inches > 9) { // If the wall is more than 9 inches from the right sonar, the right wheel will stop so the robot can
 approach the empty corridor.

 analogWrite(ServoR, 0);
 analogWrite(ServoL, 255);
 Serial.println("Turning Right");
 delay(330); // Delay 330 milliseconds
 valLine1=digitalRead(LineTrackS1);
 valLine2=digitalRead(LineTrackS2);
 if (valLine1 > 0 || valLine2 > 0){ // If the robot sees a white line, it will stop and begin the flamescan and then the flameexit

 subroutines.
 if (c > 0){ // It will only scan for a line once it is in the main program.
 FlameScan();
 FlameExit();

 }
 }
 }
 if (SonarR.Inches < 2) { // If the wall is less than 2 inches from the sonar, the left wheel will stop so the robot steers left away
 from the wall.

 analogWrite(ServoR, 150);
 analogWrite(ServoL, 0);
 Serial.println("Approaching Right Wall");
 delay(330); // Delay 330 milliseconds
 valLine1=digitalRead(LineTrackS1);
 valLine2=digitalRead(LineTrackS2);
 if (valLine1 > 0 || valLine2 > 0){

 Peluso 33

 if (c > 0){
 FlameScan();
 FlameExit();

 }
 }
 }
 if (SonarR.Inches < 0.25) { // If the wall is less than 0.25 inches from the right sonar, the robot will back up and turn left a bit

 to re-align itself in the hallway.
 Serial.print("backing up and turning left");
 analogWrite(ServoR, 255);
 analogWrite(ServoL, 150);
 delay(400);
 analogWrite(ServoR, 150);
 delay(200);
 valLine1=digitalRead(LineTrackS1);
 valLine2=digitalRead(LineTrackS2);

 if (valLine1 > 0 || valLine2 > 0){
 if (c > 0){
 FlameScan();
 FlameExit();

 }
 }
 }
 else // If none of the above conditions are true, the robot will resume driving forward with both servos.
 analogWrite(ServoR, 150);
 analogWrite(ServoL, 255);

 }

 void LeftSonar() { // Responses to left sonar readings subroutine
 if (ping.inches() > 12 && e > 2) { // If the wall is more than 12 inches away from the left sonar, the left servo will stop so the

 robot approaches the empty corridor to the left.
 // NOTE: This subroutine will not activate until the robot has already scanned a line three times ("e" value is greater than 2)

 analogWrite(ServoL, 0);
 analogWrite(ServoR, 150);
 valLine1=digitalRead(LineTrackS1);
 valLine2=digitalRead(LineTrackS2);
 delay(330);
 valLine1=digitalRead(LineTrackS1);
 valLine2=digitalRead(LineTrackS2);

 if (valLine1 > 0 || valLine2 > 0){
 if (c > 0){
 FlameScan();
 FlameExit();

 }
 }
 }

 }

 void FlameExit() {
 int c = 0; // The "c" value is set to 0 so the robot cannot scan for a line until it enters the main program.

 if (e < 3){ // If robot has scanned less than three lines, it will back up and turn right.
 mySerial.write(12);
 delay(250);
 mySerial.print(message3); // Print message to LCD: "No fire, exiting room"
 delay(1500);
 analogWrite(ServoR, 255);
 analogWrite(ServoL, 150);
 delay(2000);
 analogWrite(ServoL, 255);
 analogWrite(ServoR, 255);
 delay(500);

 Peluso 34

 mySerial.write(12);
 }
 if (e > 2){ // After the robot has scanned more than two lines, the robot will instead back up and turn left toward the last room.

 mySerial.write(12);
 delay(250);
 mySerial.print(message3);
 delay(1500);
 analogWrite(ServoR, 255);
 analogWrite(ServoL, 150);
 delay(2000);
 analogWrite(ServoR, 150);
 analogWrite(ServoL, 150);
 delay(400);
 mySerial.write(12);

 }
 }

 void FlameTracking() { // Once the robot has detected a candle in the room, it will enter a room and drive in line with the left
 wall. Once a flame is detected next to the fan, it will turn on the fan to extinguish it.
 for(int x = 0; x < 9000000; x++){ // Repeat FlameTracking virtually indefinitely
 Serial.println("Tracking Flame");
 analogWrite(ServoR, 150);
 analogWrite(ServoL, 255);
 valIR = digitalRead(SharpIR);

 ping.fire();
 Serial.print("Left Inches = ");
 Serial.print(ping.inches());
 Serial.println();

 valIR = digitalRead(SharpIR);
 Serial.print("IR = ");
 Serial.println(valIR);

 valFlame0 = digitalRead(FlameS0); // Reading the 1-pin flame sensor (by the fan) and print value to serial
 Serial.print("Flame by Fan = ");
 Serial.println(valFlame0);
 Serial.println("________________________________"); // Print a line between readings for serial visual clarity

 valIR = digitalRead(SharpIR);

 if (ping.inches() < 9){ // If the wall is less than 9 inches from the left sonar, the right servo will stop so the robot can steer away
 from the left wall.

 Serial.println("Evading wall");
 analogWrite(ServoR, 0);
 analogWrite(ServoL, 255);
 delay(450);
 if (valIR > 0){
 Serial.println("Turning right");
 analogWrite(ServoR, 255);
 analogWrite(ServoL, 255);
 delay(500);

 }
 }

 if (ping.inches() > 11){ // If the wall is more than 11 inches from the left sonar, the left servo will stop so the robot approaches the
 left wall.

 Serial.println("Approaching wall");
 analogWrite(ServoR, 150);
 analogWrite(ServoL, 0);
 delay(50);
 if (valIR > 0){
 Serial.println("Turning right");

 Peluso 35

 analogWrite(ServoR, 255);
 analogWrite(ServoL, 255);
 delay(500);

 }
 }

 if (valIR > 0){ // If the sharp IR detects an object, the robot will turn right.
 analogWrite(ServoR, 255);
 analogWrite(ServoL, 255);
 delay(500);

 }
 if (valFlame0 < 1){ // If a flame is detected next to the fan, the robot will turn left a bit, then the fan will turn on and the robot
 will stop.

 Serial.println("Extinguishing");
 analogWrite(ServoR, 150);
 analogWrite(ServoL, 150);
 delay(50);
 analogWrite(ServoR, 0);
 analogWrite(ServoL, 0);
 digitalWrite(Relay, HIGH); // Turn on fan
 delay(250);
 mySerial.print(message2); // message on "Extinguishing" on LCD
 delay(7000);
 digitalWrite(Relay, LOW); // Turn off fan
 mySerial.write(12);
 delay(250);
 mySerial.print(message9); // Print "hooray" to LCD
 delay(3000);

 }
 }
 }
 void LineSensor() { // Line sensor rapid scan subroutine
 for (int l = 0; l < 51; l++){ // With no delays, repeat the line scan 50 times.
 valLine1=digitalRead(LineTrackS1);
 valLine2=digitalRead(LineTrackS2);

 }
 }
 void ColorScan() { // Subroutine for responses to red and green color camera readings

 if (valColorR > 0 && f < 1){ // If the camera reads "RED" and has not already read "RED" before, the robot will stop and print
 a message to serial.

 f++; // add a value to red color count to prevent the camera from responding to red again
 analogWrite(ServoR, 0);
 analogWrite(ServoL, 0);
 mySerial.write(12);
 delay(250);
 mySerial.print(message4); // Print message to LCD: "FLASH EVACUATE"
 delay(250);
 mySerial.write(220); // LCD "A" note sound twice
 mySerial.write(220);
 Serial.println("FLASH: PLEASE EVACUATE");
 delay(4500);
 mySerial.write(12);
 analogWrite(ServoR, 150);
 analogWrite(ServoL, 255);
 delay(500);

 }
 if (valColorG > 0 && g < 1){ // If the camera reads "GREEN" and has not already read "GREEN" before, the robot will stop

 and print a message to serial.
 g++; // add a value to green color count to prevent the robot from responding to green again
 analogWrite(ServoR, 0);
 analogWrite(ServoL, 0);
 mySerial.write(12);
 delay(250);

 Peluso 36

 mySerial.print(message5); // Print message to LCD: "GREEN LANTERN: GET OUT"
 delay(250);
 mySerial.write(220);
 mySerial.write(220);
 Serial.println("GREEN LANTERN: PLEASE EVACUATE");
 delay(4500);
 mySerial.write(12);
 analogWrite(ServoR, 150);
 analogWrite(ServoL, 255);
 delay(500);

 }
 }

 Peluso 37

 Appendix D: Fire Contest Rules Official Document

 Peluso 38

 Peluso 39

 Peluso 40

 Peluso 41

 Peluso 42

 Wright, J. (2021). Firefighting Mobile Robot Contest (R&D Project). John R. Wright.

 Retrieved December 9, 2021, from

 https://sites.millersville.edu/jwright/Fire%20Contest%20Rules%20-%20Final%20Project

 %20Fall%202021.pdf .

https://sites.millersville.edu/jwright/Fire%20Contest%20Rules%20-%20Final%20Project%20Fall%202021.pdf
https://sites.millersville.edu/jwright/Fire%20Contest%20Rules%20-%20Final%20Project%20Fall%202021.pdf

 Peluso 43

 Appendix E: Component Tech Sheets

 This appendix contains all available tech sheets for the components used in this project

 (see Appendix A). Not all components had tech sheets that were available online, but those that

 did are listed in the same order as they appear in Appendix A. The pages containing the tech

 sheets are not numbered, but the order in which the tech sheet for each component is presented is

 laid out in the following list. Even if the complete tech sheet for a component is unavailable, in

 some cases a printed version of the linked shopping website (see Appendix A) will be presented

 in place of the tech sheet. Note that in some cases, the tech sheet presented here may not be for

 the exact same product as listed in Appendix A.

 1. IR Sensor (https://www.sparkfun.com/datasheets/Components/GP2Y0A21YK.pdf)

 2. Line Tracking Sensor

 (https://wiki.dfrobot.com/Line_Tracking_Sensor_for_Arduino_V4_SKU_SEN0017)

 3. LCD Module

 (https://www.hawkusa.com/sites/hawk-dev.ent.c-g.io/files/hawk_item/NWHVN/Series%

 20LCD%20Character/NHD-0216K1Z-NSW-FBW-L/spec/NHD-0216K1Z-NSW-FBW-L

 -spec.pdf)

 4. Color Detection Camera

 (https://www.dfrobot.com/product-1648.html?gclid=Cj0KCQiAqbyNBhC2ARIsALDwA

 sDnRz_TYK7yqTzDfs8O0wm1t6_1mUzjabZqv8Rknvbju_XG_GKXSKkaAh4aEALw_

 wcB)

 5. 1-Channel Flame Sensor

 (http://rogerbit.com/wprb/wp-content/uploads/2018/01/Flame-sensor-arduino.pdf)

 6. 3-Pin Sonar (https://www.parallax.com/product/ping-ultrasonic-distance-sensor/)

https://www.sparkfun.com/datasheets/Components/GP2Y0A21YK.pdf
https://wiki.dfrobot.com/Line_Tracking_Sensor_for_Arduino_V4_SKU_SEN0017
https://www.hawkusa.com/sites/hawk-dev.ent.c-g.io/files/hawk_item/NWHVN/Series%20LCD%20Character/NHD-0216K1Z-NSW-FBW-L/spec/NHD-0216K1Z-NSW-FBW-L-spec.pdf
https://www.hawkusa.com/sites/hawk-dev.ent.c-g.io/files/hawk_item/NWHVN/Series%20LCD%20Character/NHD-0216K1Z-NSW-FBW-L/spec/NHD-0216K1Z-NSW-FBW-L-spec.pdf
https://www.hawkusa.com/sites/hawk-dev.ent.c-g.io/files/hawk_item/NWHVN/Series%20LCD%20Character/NHD-0216K1Z-NSW-FBW-L/spec/NHD-0216K1Z-NSW-FBW-L-spec.pdf
https://www.dfrobot.com/product-1648.html?gclid=Cj0KCQiAqbyNBhC2ARIsALDwAsDnRz_TYK7yqTzDfs8O0wm1t6_1mUzjabZqv8Rknvbju_XG_GKXSKkaAh4aEALw_wcB
https://www.dfrobot.com/product-1648.html?gclid=Cj0KCQiAqbyNBhC2ARIsALDwAsDnRz_TYK7yqTzDfs8O0wm1t6_1mUzjabZqv8Rknvbju_XG_GKXSKkaAh4aEALw_wcB
https://www.dfrobot.com/product-1648.html?gclid=Cj0KCQiAqbyNBhC2ARIsALDwAsDnRz_TYK7yqTzDfs8O0wm1t6_1mUzjabZqv8Rknvbju_XG_GKXSKkaAh4aEALw_wcB
http://rogerbit.com/wprb/wp-content/uploads/2018/01/Flame-sensor-arduino.pdf
https://www.parallax.com/product/ping-ultrasonic-distance-sensor/

 Peluso 44

 7. Dual Relay Board (http://www.handsontec.com/dataspecs/2Ch-relay.pdf)

 8. Servo Motor

 (https://www.verical.com/datasheet/adafruit-servo-motors-154-5038561.pdf)

 9. Microcontroller (Teensy 3.2) (https://www.pjrc.com/teensy/techspecs.html)

http://www.handsontec.com/dataspecs/2Ch-relay.pdf
https://www.verical.com/datasheet/adafruit-servo-motors-154-5038561.pdf
https://www.pjrc.com/teensy/techspecs.html

■ Absolute Maximum Ratings

■ Outline Dimensions

1. TVs

2. Personal computers

3. Cars

4. Copiers

■ Features

■ Applications

1. Less influence on the color of reflective objects, reflectivity

2. Line-up of distance output/distance judgement type

Distance output type (analog voltage) : GP2Y0A21YK
Detecting distance : 10 to 80cm

Distance judgement type : GP2Y0D21YK
Judgement distance : 24cm

(Adjustable within the range of 10 to 80cm [Optionally available])

3. External control circuit is unnecessary

4. Low cost

(Unit : mm)

Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/

GP2Y0A21YK/GP2Y0D21YK

General Purpose Type Distance
Measuring SensorsGP2Y0A21YK/

GP2Y0D21YK

R3.75

R3.75
3.75

10.1

14.75

16.34.157.5

φ3.2 hole

φ3.2 hole

6.3
2

8.
4

7.
2

13

2-
1.

5
13

.5

37
29.5

★20±0.1★4.5

Light detector side

PWB

Lens case

1.2
3.3

Connector
Made by
J.S.T. MFG,
CO., LTD.
S3B-PH

Light emitter side

1

1 3

2

3

VO

GND
VCC

❈ The dimensions marked ★ are
described the dimensions of
lens center position.

❈ Unspecified tolerance : ±0.3mm

Terminal connection

18
.9

+0
.5

−0
.3

Parameter Symbol Rating Unit
VCC −0.3 to +7 V
VO −0.3 to VCC +0.3 V

˚C
Topr −10 to +60 ˚C
Tstg

Supply voltage
Output terminal voltage
Operating temperature
Storage temperature

(Ta=25˚C, VCC=5V)

−40 to +70

■ Electro-optical Characteristics

Fig.3 Timing Chart

GP2Y0A21YK/GP2Y0D21YK

■ Recommended Operating Conditions

Fig.1 Internal Block Diagram Fig.2 Internal Block Diagram

Parameter Symbol Rating Unit
VCC 4.5 to +5.5 VOperating supply voltage

Parameter Symbol Conditions MIN. TYP. MAX. Unit

Distance measuring range

Output terminal voltage

Difference of output voltage

∆L
0.4
−
−

1.9

30

VCC −0.3
−

−

10
0.25

− cm

mA

Distance characteristics
of output

VO

VOH

∆VO

VOL

VO

ICC

L=80cm *1

Output voltage at High *1

Output voltage at Low*1

Output change at L=80cm to 10cm*1

L=80cm *1

0.55
−

0.6

80

V
V

Average Dissipation current

1.65 2.15

2421 27

40

V

V

cm

GP2Y0A21YK

GP2Y0D21YK

GP2Y0A21YK

GP2Y0D21YK

*1 *3

*1 *4 *2

(Ta=25˚C, VCC=5V)

Note) L : Distance to reflective object
*1 Using reflective object : White paper (Made by Kodak Co. Ltd. gray cards R-27 ⋅ white face, reflective ratio ; 90%)
*2 We ship the device after the following adjustment : Output switching distance L=24cm±3cm must be measured by the sensor
*3 Distance measuring range of the optical sensor system
*4 Output switching has a hysteresis width. The distance specified by Vo should be the one with which the output L switches to the output H

Signal
processing
circuit

Voltage
regulator

Output
circuit

Oscillation
circuit

LED drive
circuit

VCC 5V

Vo

Analog output

GND

PSD

LED
Distance measuring IC

GP2Y0A21YK
VCC 5V

VO

Digital output

GND

PSD

LED

GP2Y0D21YK

VCC

12kΩ
Voltage
regulator

Output
circuit

Distance measuring IC

Signal
processing
circuit

Oscillation
circuit

LED drive
circuit

5.0msMAX.(GP2Y0A21YK)

38.3ms±9.6ms

VO (Output) Unstable output First output Second output nth output

VCC

(Power supply)

First measurment
Distance
measuring
operation

Second
measurment

nth
measurment

7.6ms±1.9msTYP.(GP2Y0D21YK)

Fig.4 Distance Characteristics

GP2Y0A21YK/GP2Y0D21YK

Fig.5 Analog Output Voltage vs. Distance to
Reflective Object

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

L H

H L

Hystersis width

Distance to reflective object L (cm)

(Non detection)

(Detection)

O
ut

pu
t (

V
)

Output H

Output L

GP2Y0D21YK

Output switching point distance
L=24±3cm

A
na

lo
g

ou
tp

ut
 v

ol
ta

ge
 V

O
 (V

)

0 50 8060 7040302010
0

3.5

3

2.5

2

1.5

1

0.5

GP2Y0A21YK

Distance to reflective object L (cm)

White paper
(Reflective ratio:90%)
Gray paper
(Reflective ratio:18%)

NOTICE
● The circuit application examples in this publication are provided to explain representative applications of SHARP

devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
SHARP's devices.

● Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
also subject to change without notice.

● Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
specified in the relevant specification sheet nor meet the following conditions:

(i) The devices in this publication are designed for use in general electronic equipment designs such as:
- - - Personal computers
- - - Office automation equipment
- - - Telecommunication equipment [terminal]
- - - Test and measurement equipment
- - - Industrial control
- - - Audio visual equipment
- - - Consumer electronics

(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when
SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- - - Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- - - Traffic signals
- - - Gas leakage sensor breakers
- - - Alarm equipment
- - - Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of
reliability and safety such as:
- - - Space applications
- - - Telecommunication equipment [trunk lines]
- - - Nuclear power control equipment
- - - Medical and other life support equipment (e.g., scuba).

● Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
other than those recommended by SHARP or when it is unclear which category mentioned above controls the
intended use.

● If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign
Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.

● This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright
laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written
permission is also required before any use of this publication may be made by a third party.

● Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

12/20/21, 7:21 PM Line_Tracking_Sensor_for_Arduino_V4_SKU_SEN0017-DFRobot

https://wiki.dfrobot.com/Line_Tracking_Sensor_for_Arduino_V4_SKU_SEN0017 1/3

https://www.dfrobot.com/product-85.html
https://www.dfrobot.com/product-85.html
https://www.dfrobot.com/product-85.html

12/20/21, 7:21 PM Line_Tracking_Sensor_for_Arduino_V4_SKU_SEN0017-DFRobot

https://wiki.dfrobot.com/Line_Tracking_Sensor_for_Arduino_V4_SKU_SEN0017 2/3

///Arduino Sample Code
void setup()
{
 Serial.begin(9600);
}
void loop()
{
 Serial.println(digitalRead(2)); // print the data from the sensor
 delay(500);
}

https://www.dfrobot.com/forum/
https://www.dfrobot.com/product-85.html
https://www.dfrobot.com/index.php?route=information/distributorslogo

[1]

NHD‐0216K1Z‐NSW‐FBW‐L
Character Liquid Crystal Display Module

NHD‐ Newhaven Display
0216‐ 2 lines x 16 characters
K1Z‐ Model
N‐ Transmissive
SW‐ Side White LED Backlight
F‐ FSTN(‐)
B‐ 6:00 view
W‐ Wide Temperature (‐20°C~+70°C)
L‐ Low Power 20mA
 RoHS Compliant

 Newhaven Display International, Inc.
 2511 Technology Drive, Suite 101
 Elgin IL, 60124
 Ph: 847‐844‐8795 Fax: 847‐844‐8796

www.newhavendisplay.com
nhtech@newhavendisplay.com nhsales@newhavendisplay.com

[2]

Document Revision History
Revision Date Description Changed by

0 10/5/2007 Initial Release ‐
1 12/17/2009 User Guide Reformat BE
2 1/7/2010 Optical revised BE

Functions and Features
• 2 lines x 16 characters
• Built‐in controller (SPLC780D or equivalent)
• +5.0V Power Supply
• 1/16 duty, 1/5 bias
• RoHS compliant

Mechanical Drawing

Mechanical Drawing

Newhaven DisplayNHD-0216K1Z-NSW-FBW-L

FSTN (-)

-30 C~+80 C
-20 C~+70 C

Side White

LED+
LED-

[4]

Pin Description and Wiring Diagram
Pin No. Symbol External

Connection
Function Description

1 VSS Power Supply Ground
2 VDD Power Supply Supply Voltage for logic (+5.0V)
3 V0 Adj Power Supply Power supply for contrast (approx. 0.5V)
4 RS MPU Register select signal. RS=0: Command, RS=1: Data
5 R/W MPU Read/Write select signal, R/W=1: Read R/W: =0: Write
6 E MPU Operation enable signal. Falling edge triggered.

7‐10 DB0 – DB3 MPU Four low order bi‐directional three‐state data bus lines. These four
are not used during 4‐bit operation.

11‐14 DB4 – DB7 MPU Four high order bi‐directional three‐state data bus lines.
15 LED+ Power Supply Power supply for LED Backlight (+5.0V via on‐board resistor)
16 LED‐ Power Supply Ground for Backlight

Recommended LCD connector: 2.54mm pitch pins
Backlight connector: ‐‐‐ Mates with: ‐‐‐

[5]

Electrical Characteristics

Item Symbol Condition Min. Typ. Max. Unit
Operating Temperature Range Top Absolute Max ‐20 ‐ +70 ⁰C
Storage Temperature Range Tst Absolute Max ‐30 ‐ +80 ⁰C
Supply Voltage VDD 4.7 5.0 5.5 V
Supply Current IDD Ta=25°C, VDD=5.0V ‐ 1.5 2.5 mA
Supply for LCD (contrast) VDD‐V0 Ta=25°C ‐ 4.5 ‐ V
“H” Level input Vih 2.2 ‐ VDD V
“L” Level input Vil 0 ‐ 0.6 V
“H” Level output Voh 2.4 ‐ ‐ V
“L” Level output Vol ‐ ‐ 0.4 V

Backlight Supply Voltage Vled ‐ ‐ 5.0 ‐ V
Backlight Supply Current Iled Vled=5.0V ‐ 20 ‐ mA

Optical Characteristics
Item Symbol Condition Min. Typ. Max. Unit

Viewing Angle – Vertical (top) AV Cr ≥ 3 ‐ 20 ‐ ⁰
Viewing Angle – Vertical (bottom) AV Cr ≥ 3 ‐ 50 ‐ ⁰
Viewing Angle – Horizontal (left) AH Cr ≥ 3 ‐ 30 ‐ ⁰
Viewing Angle – Horizontal (right) AH Cr ≥ 3 ‐ 30 ‐ ⁰
Contrast Ratio Cr 3 5 ‐ ‐
Response Time (rise) Tr ‐ ‐ 150 250 ms
Response Time (fall) Tf ‐ ‐ 150 250 ms

Controller Information
Built‐in SPLC780D. Download specification at http://www.newhavendisplay.com/app_notes/SPLC780D.pdf

[6]

Table of Commands

[7]

Timing Characteristics

[8]

Built‐in Font Table

[9]

[10]

Example Initialization Program

8-bit Initialization:
/**/
void command(char i)
{
 P1 = i; //put data on output Port
 D_I =0; //D/I=LOW : send instruction
 R_W =0; //R/W=LOW : Write
 E = 1;
 Delay(1); //enable pulse width >= 300ns
 E = 0; //Clock enable: falling edge
}
/**/
void write(char i)
{
 P1 = i; //put data on output Port
 D_I =1; //D/I=LOW : send data
 R_W =0; //R/W=LOW : Write
 E = 1;
 Delay(1); //enable pulse width >= 300ns
 E = 0; //Clock enable: falling edge
}
/**/
void init()
{
 E = 0;
 Delay(100); //Wait >15 msec after power is applied
 command(0x30); //command 0x30 = Wake up
 Delay(30); //must wait 5ms, busy flag not available
 command(0x30); //command 0x30 = Wake up #2
 Delay(10); //must wait 160us, busy flag not available
 command(0x30); //command 0x30 = Wake up #3
 Delay(10); //must wait 160us, busy flag not available
 command(0x38); //Function set: 8-bit/2-line
 command(0x10); //Set cursor
 command(0x0c); //Display ON; Cursor ON
 command(0x06); //Entry mode set
}
/**/

[11]

4-bit Initialization:
/**/
void command(char i)
{
 P1 = i; //put data on output Port
 D_I =0; //D/I=LOW : send instruction
 R_W =0; //R/W=LOW : Write
 Nybble(); //Send lower 4 bits
 i = i<<4; //Shift over by 4 bits
 P1 = i; //put data on output Port
 Nybble(); //Send upper 4 bits
}
/**/
void write(char i)
{
 P1 = i; //put data on output Port
 D_I =1; //D/I=HIGH : send data
 R_W =0; //R/W=LOW : Write
 Nybble(); //Clock lower 4 bits
 i = i<<4; //Shift over by 4 bits
 P1 = i; //put data on output Port
 Nybble(); //Clock upper 4 bits
}
/**/
void Nybble()
{
 E = 1;
 Delay(1); //enable pulse width >= 300ns
 E = 0; //Clock enable: falling edge
}
/**/
void init()
{
 P1 = 0;
 P3 = 0;
 Delay(100); //Wait >15 msec after power is applied
 P1 = 0x30; //put 0x30 on the output port
 Delay(30); //must wait 5ms, busy flag not available
 Nybble(); //command 0x30 = Wake up
 Delay(10); //must wait 160us, busy flag not available
 Nybble(); //command 0x30 = Wake up #2
 Delay(10); //must wait 160us, busy flag not available
 Nybble(); //command 0x30 = Wake up #3
 Delay(10); //can check busy flag now instead of delay
 P1= 0x20; //put 0x20 on the output port
 Nybble(); //Function set: 4-bit interface
 command(0x28); //Function set: 4-bit/2-line
 command(0x10); //Set cursor
 command(0x0F); //Display ON; Blinking cursor
 command(0x06); //Entry Mode set
}
/**/

[12]

Quality Information

Test Item Content of Test Test Condition Note
High Temperature storage Endurance test applying the high

storage temperature for a long time.
+80⁰C , 48hrs 2

Low Temperature storage Endurance test applying the low storage
temperature for a long time.

‐30⁰C , 48hrs 1,2

High Temperature
Operation

Endurance test applying the electric stress
(voltage & current) and the high thermal
stress for a long time.

+70⁰C 48hrs 2

Low Temperature
Operation

Endurance test applying the electric stress
(voltage & current) and the low thermal
stress for a long time.

‐20⁰C , 48hrs 1,2

High Temperature /
Humidity Operation

Endurance test applying the electric stress
(voltage & current) and the high thermal
with high humidity stress for a long time.

+40⁰C , 90% RH , 48hrs 1,2

Thermal Shock resistance Endurance test applying the electric stress
(voltage & current) during a cycle of low
and high thermal stress.

0⁰C,30min ‐> 25⁰C,5min ‐>
50⁰C,30min = 1 cycle
10 cycles

Vibration test Endurance test applying vibration to
simulate transportation and use.

10‐55Hz , 15mm amplitude.
60 sec in each of 3 directions
X,Y,Z
For 15 minutes

3

Static electricity test Endurance test applying electric static
discharge.

VS=800V, RS=1.5kΩ, CS=100pF
 One time

Note 1: No condensation to be observed.
Note 2: Conducted after 4 hours of storage at 25⁰C, 0%RH.
Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs
See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions
http://www.newhavendisplay.com/index.php?main_page=terms

12/20/21, 7:21 PM OpenMV Cam H7 – A Machine Vision Camera - DFRobot

https://www.dfrobot.com/product-1648.html?gclid=Cj0KCQiAqbyNBhC2ARIsALDwAsDnRz_TYK7yqTzDfs8O0wm1t6_1mUzjabZqv8Rknvbju_XG_GKXSKkaA… 1/5

Register & Complete the Informations to Get Coupons Worth $33 (https://www.dfrobot.com/blog-1581.html?tracking=61921bb55f8d3)

(/)

� 4 Search

HOME (/) COMMUNITY (https://community.dfrobot.com) FORUM (https://www.dfrobot.com/forum)
WIKI (https://wiki.dfrobot.com) BLOG (https://www.dfrobot.com/blog) PRODUCT LINES �

EDUCATION (https://edu.dfrobot.com)

�
$USD

LOGIN/SIGN UP

(https://www.dfrobot.com/i

route=account/login)

;

WISH LIST

(/INDEX.PHP?

ROUTE=ACCOUNT/WISHLIS

'
Sensors (https://www.dfrobot.com/category-36.html) / Light & Imaging Sensors (https://www.dfrobot.com/category-58.html) / OpenMV Cam H7 – A Machine Vision Camera

� %

Quantity: - 1 +

BUY IT NOW ADD TO CART

$65.00 In Stock

Categories: Sensors (https://www.dfrobot.com/category-36.html)
All Products (https://www.dfrobot.com/category-48.html) Light &
Imaging Sensors (https://www.dfrobot.com/category-58.html)
Topic: Arti�cial Intelligence Hardware
(https://www.dfrobot.com/topic-284.html)

OpenMV Cam H7 – A Machine Vision Camera
SKU:DFR0517 Brand:Other Reward Points: 650

H7 Plus

LCD Shield WiFi Shield

Gravity I/O Expansion Shield

(https://www.dfrobot.com/product-2263.html)
(https://www.dfrobot.com/product-1648.html)

(https://www.dfrobot.com/product-2264.html)
(https://www.dfrobot.com/product-2262.html)

(https://www.dfrobot.com/product-1791.html)

* Model: H7 $

'

Frequently Bought Together

OpenMV Cam H7 – A
Machine Vision Cam
era

6 �
�

You have choosen:0
Total amount: $0

BUY IT NOW

�
(https://www.dfrobot.com/product-
873.html)

Jumper Wires 7 1"

6
(https://www.dfrobot.com/product-
1076.html)

Flat Noodle Micro

6
(https://www.dfrobot.com/product-
1791.html)

Gravity: I/O

6
(https://www.dfrobo
1865.html)

Horned Sungem

%

•

•

•

•

•
•
•
•

•
•
•
•
•

INTRODUCTION
The OpenMV Cam H7 comes with a MT9M114 image sensor is capable of taking 640x480 8-bit Grayscale images or 640x480 8-
bit BAYER images at 40 FPS when the resolution is above 320x240 and 80 FPS when it is below. Most simple algorithms will run
between 40-80 FPS on QVGA (320x240) resolutions and below. Your image sensor comes with a 2.1mm lens on a standard M12
lens mount. If you want to use more specialized lenses with your image sensor you can easily buy and attach them yourself.

FEATURES
The STM32H743VI ARM Cortex M7 processor running at 480 MHz with 1MB SRAM and 2MB of �ash. All I/O pins output 3.3V and
are 5V tolerant. The processor has the following I/O interfaces:

A full speed USB (12Mbs) interface to your computer. Your OpenMV Cam will appear as a Virtual COM Port and a USB Flash
Drive when plugged in.

A μSD Card socket capable of 100Mbs reads/writes which allows your OpenMV Cam to take pictures and easily pull machine
vision assets off of the μSD card.

A SPI bus that can run up to 80Mbs allowing you to easily stream image data off the system to either the LCD Shield, the WiFi
Shield, or another microcontroller.

An I2C Bus (up to 1Mb/s), CAN Bus (up to 1Mb/s), and an Asynchronous Serial Bus (TX/RX, up to 7.5Mb/s) for interfacing
with other microcontrollers and sensors.

A 12-bit ADC and a 12-bit DAC.

Three I/O pins for servo control.

Interrupts and PWM on all I/O pins (there are 10 I/O pins on the board).

An RGB LED and two high power 850nm IR LEDs.

APPLICATIONS
The OpenMV Cam can be used for the following things currently (more in the future):

Frame Differencing

Color Tracking

Marker Tracking

Face Detection

Eye Tracking

0

- 1 +

OpenMV Cam H7 – A
Machine Vision Camera

$65.00
In Stock

Quantity:

BUY IT NOW

ADD TO CART

INTRODUCTION

FEATURES

APPLICATIONS

SPECIFICATION

DOCUMENTS

SHIPPING LIST

REVIEW

FAQ

BACK TO TOP

https://www.dfrobot.com/blog-1581.html?tracking=61921bb55f8d3
https://www.dfrobot.com/
https://www.dfrobot.com/
https://community.dfrobot.com/
https://www.dfrobot.com/forum
https://wiki.dfrobot.com/
https://www.dfrobot.com/blog
javascript:;
https://edu.dfrobot.com/
https://www.dfrobot.com/index.php?route=account/login
https://www.dfrobot.com/index.php?route=account/wishlist
https://www.dfrobot.com/category-36.html
https://www.dfrobot.com/category-58.html
https://www.dfrobot.com/category-36.html
https://www.dfrobot.com/category-48.html
https://www.dfrobot.com/category-58.html
https://www.dfrobot.com/topic-284.html
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://www.dfrobot.com/product-2263.html
https://www.dfrobot.com/product-1648.html
https://www.dfrobot.com/product-2264.html
https://www.dfrobot.com/product-2262.html
https://www.dfrobot.com/product-1791.html
javascript:;
javascript:;
javascript:;
https://www.dfrobot.com/product-873.html
https://www.dfrobot.com/product-873.html
https://www.dfrobot.com/product-1076.html
https://www.dfrobot.com/product-1076.html
https://www.dfrobot.com/product-1791.html
https://www.dfrobot.com/product-1791.html
https://www.dfrobot.com/product-1865.html
https://www.dfrobot.com/product-1865.html
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

12/20/21, 7:21 PM OpenMV Cam H7 – A Machine Vision Camera - DFRobot

https://www.dfrobot.com/product-1648.html?gclid=Cj0KCQiAqbyNBhC2ARIsALDwAsDnRz_TYK7yqTzDfs8O0wm1t6_1mUzjabZqv8Rknvbju_XG_GKXSKkaA… 2/5

•
•
•
•
•
•
•
•
•
•
•

Optical Flow

QR Code Detection/Decoding

Data Matrix Detection/Decoding

Linear Barcode Decoding

AprilTag Tracking

Line Detection

Circle Detection

Rectangle Detection

Template Matching

Image Capture

Video Recording

SPECIFICATION

Processor

ARM® 32-bit Cortex®-M7 CPU

w/ Double Precision FPU

480 MHz (1027 DMIPS)

Core Mark Score: 2400

(compare w/ Raspberry Pi 2: 2340)

RAM Layout

64KB Stack

256KB .DATA/.BSS/Heap

512KB Frame Buffer/Stack

256KB DMA Buffers

Flash Layout

128KB Bootloader

128KB Embedded Flash Drive

1792KB Firmware

(2MB Total)

Supported Image Formats

Grayscale

RGB565

JPEG (and BAYER)

Maximum Supported Resolutions

Grayscale: 640x480 and under

RGB565: 320x240 and under

Grayscale JPEG: 640x480 and under

RGB565 JPEG: 640x480 and under

Lens Info

Focal Length: 2.1mm

Aperture: F2.0

Format: 1/6"

HFOV = 60.7°, VFOV = 47.5°

Mount: M12*0.5

IR Cut Filter: 650nm (removable)

12/20/21, 7:21 PM OpenMV Cam H7 – A Machine Vision Camera - DFRobot

https://www.dfrobot.com/product-1648.html?gclid=Cj0KCQiAqbyNBhC2ARIsALDwAsDnRz_TYK7yqTzDfs8O0wm1t6_1mUzjabZqv8Rknvbju_XG_GKXSKkaA… 3/5

•
•
•

•
•

Electrical Info All pins are 5V tolerant with 3.3V output. All pins can sink or source up to
25mA. P6 is not 5V tolerant in ADC or DAC mode. Up to 120mA may be

sinked or sourced in total between all pins. VIN may be between 3.6V and
5V. Do not draw more than 250mA from your OpenMV Cam's 3.3V rail.

Weight 19g
Length 45mm
Width 36mm
Height 30mm

DOCUMENTS
Quick reference for the openmvcam (http://docs.openmv.io/openmvcam/quickref.html)

OpenMV Cam Schematic (https://github.com/openmv/openmv-boards/raw/master/openmv4/base/base.pdf)

Uno�cial 3D CAD Model (https://grabcad.com/library/openmv-cam-m7-1)

SHIPPING LIST
OpenMV Cam H7 x1

Pin Header x2

REVIEW

FAQ

http://docs.openmv.io/openmvcam/quickref.html
https://github.com/openmv/openmv-boards/raw/master/openmv4/base/base.pdf
https://grabcad.com/library/openmv-cam-m7-1

Flame Sensor Module

Introduction
This module is sensitive to the flame and radiation. It also can detect
ordinary light source in the range of of a wavelength 760nm-1100 nm. The
detection distance is up to 100 cm.

The Flame sensor can output digital or analog signal. It can be used as a
flame alarm or in fire fighting robots.

 Future Electronics Egypt Ltd. (Arduino Egypt).

http://store.fut-electronics.com/11ASENS-FL-001.html
http://store.fut-electronics.com/11ASENS-FL-001.html
http://store.fut-electronics.com/index.php
http://store.fut-electronics.com/index.php

Description

• Detects a flame or a light source of a wavelength in the range of
760nm-1100 nm

• Detection distance: 20cm (4.8V) ~ 100cm (1V)
• Detection angle about 60 degrees, it is sensitive to the flame spectrum.
• Comparator chip LM393 makes module readings stable.
• Adjustable detection range.
• Operating voltage 3.3V-5V
• Digital and Analog Output
 " DO digital switch outputs (0 and 1)
 " AO analog voltage output

• Power indicator and digital switch output indicator

Interface Description (4-wire)
1) VCC -- 3.3V-5V voltage
2) GND -- GND
3) DO -- board digital output interface (0 and 1)
4) AO -- board analog output interface

 Future Electronics Egypt Ltd. (Arduino Egypt).

http://store.fut-electronics.com/index.php
http://store.fut-electronics.com/index.php

Arduino Example

Here is sample code and connection to Arduino board. The analog
output can be connected to any analog input pin on Arduino.

AnalogReadSerial
 Reads an analog input on pin 0, prints the result to the serial monitor.
 Attach the center pin of a potentiometer to pin A0, and the outside pins to
+5V and ground.

 This example code is in the public domain.
 */

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
 // read the input on analog pin 0:
 int sensorValue = analogRead(A0);
 // print out the value you read:
 Serial.println(sensorValue);
 delay(1); // delay in between reads for stability
}

 Future Electronics Egypt Ltd. (Arduino Egypt).

http://store.fut-electronics.com/index.php
http://store.fut-electronics.com/index.php

12/20/21, 7:22 PM PING))) Ultrasonic Distance Sensor - Parallax

https://www.parallax.com/product/ping-ultrasonic-distance-sensor/ 1/3

� Sales: (888) 512-1024(tel:+18885121024)

� Educator Hotline: (916) 701-8625(tel:+19167018625)

* Log In(https://www.parallax.com/log-in/)

o Access Old Parallax Site(https://www1.parallax.com)
MADE IN USA

(https://www.parallax.com/made-in-the-usa/)

Propeller +Education +Support +ShopAbout Parallax +Community +Sales + 'Search... ë

PING))) Ultrasonic
Distance Sensor

$34.95

Quantity Discounts

Product Description
PING))) Ultrasonic Distance Sensor Overview:

Catalog

tel:+18885121024
tel:+19167018625
https://www.parallax.com/log-in/
https://www1.parallax.com/
https://www.parallax.com/made-in-the-usa/
https://www.parallax.com/
https://www.parallax.com/propeller/
https://www.parallax.com/education/
https://www.parallax.com/support/
https://www.parallax.com/shop/
https://www.parallax.com/about-parallax/
https://www.parallax.com/community/
https://www.parallax.com/sales/
https://www.parallax.com/
https://www.parallax.com/product-category/sensors/
https://www.parallax.com/product-category/sensors/rangefinders/
https://media.parallax.com/wp-content/uploads/2020/06/26160348/28015.png
https://www.parallax.com/education/robotics/
https://learn.parallax.com/tutorials/hardware/accessories/ping
https://www.parallax.com/product-category/propeller-1/
https://www.parallax.com/product-category/propeller-2/
https://www.parallax.com/product-category/basic-stamp/
https://www.parallax.com/product-category/shield-for-arduino/
https://www.parallax.com/product-category/microbit/
https://www.parallax.com/product-category/activitybot-360/
https://www.parallax.com/product-category/boe-bot/
https://www.parallax.com/product-category/cyberbot/
https://www.parallax.com/product-category/shield-bot/
https://www.parallax.com/product-category/sumobot-wx/

12/20/21, 7:22 PM PING))) Ultrasonic Distance Sensor - Parallax

https://www.parallax.com/product/ping-ultrasonic-distance-sensor/ 2/3

Key Features:

Application Ideas:

PING))) Ultrasonic Distance Sensor Speci�cations:

Related Products

LaserPING 2m Range�nder

$29.99

Add to cart (?add-to-cart=1761)

PING))) Protector Stand

$8.99

Add to cart (?add-to-cart=1635)

PING))) Mounting Bracket Kit

$24.99

Add to cart (?add-to-cart=1564)

https://www.parallax.com/product/laserping-2m-rangefinder/
https://www.parallax.com/product/ping-ultrasonic-distance-sensor/?add-to-cart=1761
https://www.parallax.com/product/ping-protector-stand/
https://www.parallax.com/product/ping-ultrasonic-distance-sensor/?add-to-cart=1635
https://www.parallax.com/product/ping-mounting-bracket-kit/
https://www.parallax.com/product/ping-ultrasonic-distance-sensor/?add-to-cart=1564
https://www.parallax.com/product/activitybot-360-robot-kit/
https://www.parallax.com/product-category/sumobot-wx/
https://www.parallax.com/product-category/all-robotics/
https://www.parallax.com/product-category/sensors/
https://www.parallax.com/product-category/sensors/s-kits/
https://www.parallax.com/product-category/sensors/temperature-humidity/
https://www.parallax.com/product-category/sensors/pressure-flex-rpm/
https://www.parallax.com/product-category/sensors/proximity-motion/
https://www.parallax.com/product-category/sensors/infrared/
https://www.parallax.com/product-category/sensors/human-input-devices/
https://www.parallax.com/product-category/sensors/gps/
https://www.parallax.com/product-category/sensors/gas/
https://www.parallax.com/product-category/sensors/color-light/

1 www.handsontec.com

Handson Technology

User Guide

2 Channel 5V Optical Isolated Relay Module

This is a LOW Level 5V 2-channel relay interface board, and each channel needs a 15-20mA
driver current. It can be used to control various appliances and equipment with large current.
It is equipped with high-current relays that work under AC250V 10A or DC30V 10A. It has
a standard interface that can be controlled directly by microcontroller. This module is
optically isolated from high voltage side for safety requirement and also prevent ground loop
when interface to microcontroller.

Brief Data:

• Relay Maximum output: DC 30V/10A, AC 250V/10A.

• 2 Channel Relay Module with Opto-coupler. LOW Level Trigger expansion board, which is
compatible with Arduino control board.

• Standard interface that can be controlled directly by microcontroller (8051, AVR, *PIC, DSP,
ARM, ARM, MSP430, TTL logic).

• Relay of high quality low noise relays SPDT. A common terminal, a normally open, one
normally closed terminal.

• Opto-Coupler isolation, for high voltage safety and prevent ground loop with microcontroller.

2 www.handsontec.com

It is sometimes possible to use this relay boards with 3.3V signals, if the JD-VCC (Relay Power) is provided
from a +5V supply and the VCC to JD-VCC jumper is removed. That 5V relay supply could be totally
isolated from the 3.3V device, or have a common ground if opto-isolation is not needed. If used with
isolated 3.3V signals, VCC (To the input of the opto-isolator, next to the IN pins) should be connected to the
3.3V device's +3.3V supply.

NOTE: Some Raspberry-Pi users have found that some relays are reliable and others do not actuate
sometimes. It may be necessary to change the value of R1 from 1000 ohms to something like 220 ohms, or
supply +5V to the VCC connection.

Schematic:

VCC and RY-VCC are also the power supply of the relay module. When you need to drive a large power
load, you can take the jumper cap off and connect an extra power to RY-VCC to supply the relay; connect
VCC to 5V of the MCU board to supply input signals.

NOTES: If you want complete optical isolation, connect "Vcc" to Arduino +5 volts but do NOT connect
Arduino Ground. Remove the Vcc to JD-Vcc jumper. Connect a separate +5 supply to "JD-Vcc" and board
Gnd. This will supply power to the transistor drivers and relay coils.

If relay isolation is enough for your application, connect Arduino +5 and Gnd, and leave Vcc to JD-Vcc
jumper in place.

3 www.handsontec.com

NOTE: The digital input s from Arduino are Active LOW: The relay actuates and LED lights when the input
pin is LOW, and turns off on HIGH.

Module Layout:

Supply voltage to the coil and some currents will pass through the coil thus generating the electromagnetic
effect. So the armature overcomes the tension of the spring and is attracted to the core, thus closing the
moving contact of the armature and the normally open (NO) contact or you may say releasing the former
and the normally closed (NC) contact. After the coil is de-energized, the electromagnetic force disappears
and the armature moves back to the original position, releasing the moving contact and normally closed
contact. The closing and releasing of the contacts results in power on and off of the circuit.

Operating Principle:

See the picture below: A is an electromagnet, B armature, C spring, D moving contact, and E fixed contacts.
There are two fixed contacts, a normally closed one and a normally open one. When the coil is not energized,
the normally open contact is the one that is off, while the normally closed one is the other that is on.

IN1: Signal triggering terminal 1 of relay module

Input:

VCC : Connected to positive supply voltage (supply power according to relay voltage)

GND : Connected to supply ground.

4 www.handsontec.com

IN2: Signal triggering terminal 2 of relay module

Output:

Each module of the relay has one NC (normally close), one NO (normally open) and one COM (Common)
terminal. So there are 2 NC, 2 NO and 2 COM of the channel relay in total. NC stands for the normal close
port contact and the state without power. NO stands for the normal open port contact and the state with
power. COM means the common port. You can choose NC port or NO port according to whether power or
not.

Testing Setup:

When a low level is supplied to signal terminal of the 2-channel relay, the LED at the output terminal will
light up. Otherwise, it will turn off. If a periodic high and low level is supplied to the signal terminal, you
can see the LED will cycle between on and off.

For Arduino：

Step 1：

Connect the signal terminal IN1、IN2 of 2-channel relay to digital pin 4 & 5 of the Arduino Uno or
ATMega2560 board, and connect an LED at the output terminal.

IN1> 4

IN2> 5

Step 2:

Upload the sketch "text_code" to the Arduino Uno or ATMega2560 board.Then you can see the LED cycle
between on and off.

The actual figure is shown below:

For raspberry Pi:

5 www.handsontec.com

Step1:

Connect the signal terminal IN2、IN1 of 2-channel relay to port 17、18 of the Raspberry Pi, and connect an
LED at the output terminal.

IN2 > 17

IN1 > 18

Step 2:

Run the “test_code”. Then you can see the LED cycle between on and off.

Sketch for Arduino:

/**
 Name：_2_channel_relay
 Description: control the 2 channel relay module to ON or OFF
 Website: www.handsontec.com
 Email: techsupport@handsontec.com
***/

//the relays connect to
int IN1 = 4;
int IN2 = 5;

#define ON 0
#define OFF 1

void setup()
{
 relay_init();//initialize the relay
}

void loop() {
 relay_SetStatus(ON, OFF);//turn on RELAY_1

6 www.handsontec.com

 delay(2000);//delay 2s
 relay_SetStatus(OFF, ON);//turn on RELAY_2
 delay(2000);//delay 2s
}
void relay_init(void)//initialize the relay
{
 //set all the relays OUTPUT
 pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
 relay_SetStatus(OFF, OFF); //turn off all the relay
}
//set the status of relays
void relay_SetStatus(unsigned char status_1, unsigned char status_2)
{
 digitalWrite(IN1, status_1);
 digitalWrite(IN2, status_2);
}

Code for Raspberry Pi:

#!/usr/bin/env python
'''
**
* Filename : 2_channel_relay.py
* Description : a sample script for 2-Channel High trigger Relay
* E-mail : techsupport@handsontec.com
* Website : www.handsontec.com
* Detail : New file
**
'''
import RPi.GPIO as GPIO
from time import sleep

Relay_channel = [17, 18]

def setup():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(Relay_channel, GPIO.OUT, initial=GPIO.LOW)
 print "|===|"
 print "| 2-Channel High trigger Relay Sample |"
 print "|---|"
 print "| |"
 print "| Turn 2 channels on off in orders |"
 print "| |"
 print "| 17 ===> IN2 |"
 print "| 18 ===> IN1 |"
 print "| |"
 print "| |"
 print "|===|"

def main():
 while True:
 for i in range(0, len(Relay_channel)):
 print '...Relay channel %d on' % i+1
 GPIO.output(Relay_channel[i], GPIO.HIGH)
 sleep(0.5)
 print '...Relay channel %d off' % i+1
 GPIO.output(Relay_channel[i], GPIO.LOW)
 sleep(0.5)

def destroy():
 GPIO.output(Relay_channel, GPIO.LOW)
 GPIO.cleanup()

7 www.handsontec.com

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Looking for a discount?
Check out our current promotions!

This coversheet was created by Verical, a division of Arrow Electronics, Inc. (“Verical”). The attached document was created by the part supplier,
not Verical, and is provided strictly 'as is.' Verical, its subsidiaries, affiliates, employees, and agents make no representations or warranties
regarding the attached document and disclaim any liability for the consequences of relying on the information therein. All referenced brands,
product names, service names, and trademarks are the property of their respective owners.

00000005981LF-000
EOS Power

Buy Now

We have 45,000 LP502030-PCM-NTC-LD-A02554 - EEMB - Lithium Battery Rectangular 3.7V 250mAh Rechargeable in
stock now. Starting at $0.034. This EEMB part is fully warrantied and traceable.

1-855-837-4225
Give us a call

International: 1-555-555-5555 1-415-281-38661-415-281-3866

Arrow Electronics,
Verical Division
P.O. Box 740970
Los Angeles, CA 90074-0970

Arrow Electronics, Inc
9201 East Dry Creek Road
Centennial, CO 80112

154
ADAFRUIT

Buy Now

https://www.verical.com/promotions?utm_medium=datasheet&utm_source=pdf&utm_content=link&utm_term=234&utm_campaign=datasheet_promopage_2017
mailto:sales@verical.com
mailto:support@verical.com
https://www.verical.com/about-us/selling-on-verical
https://www.verical.com/pd/adafruit-servo-motors-154-5038561?utm_medium=datasheet&utm_source=pdf&utm_content=link&utm_term=154&utm_campaign=datasheet_coverpage_2017
https://www.verical.com/pd/adafruit-servo-motors-154-5038561?utm_medium=datasheet&utm_source=pdf&utm_content=link&utm_term=154&utm_campaign=datasheet_coverpage_2017

0 Items �Sign In

SHOP BLOG LEARN FORUMS VIDEOS

ROBOTICS & CNC / SERVOS / CONTINUOUS ROTATION SERVO

DESCRIPTION
This servo rotates fully forward or backwards instead of moving to a position. You can use any

servo code, hardware or library to control these servos. Good for making simple moving

robots. Comes with four different horns, as shown.

To control with an Arduino, we suggest connecting the control wire to pin 9 or 10 and using the

Servo library included with the Arduino IDE (see here for an example sketch). Position "90"

(1.5ms pulse) is stop, "180" (2ms pulse) is full speed forward, "0" (1ms pulse) is full speed

backwards. They may require some simple calibration, simply tell the servo to 'stop' and then

1 ADD TO CART

Continuous Rotation
Servo - FeeTech
FS5103R
PRODUCT ID: 154

IN STOCK

 Also include 1 x Continuous Rotation Servo

Wheel ()

1-9

10-99

100+

ADD TO WISHLIST

DESCRIPTION

TECHNICAL DETAILS

�

https://www.adafruit.com/shopping_cart
https://www.adafruit.com/index.php?main_page=login
https://www.adafruit.com
https://www.adafruit.com/categories
https://blog.adafruit.com
https://learn.adafruit.com
https://forums.adafruit.com
https://www.youtube.com/adafruit
https://www.adafruit.com/category/227
https://www.adafruit.com/category/232
https://cdn-shop.adafruit.com/1200x900/154-03.jpg
https://cdn-shop.adafruit.com/1200x900/154-04.jpg
https://www.youtube.com/watch?v=7Rt5xUbqDzA&rel=0&autoplay=1&start=10
https://www.adafruit.com/product/154#Slide2
https://www.adafruit.com/product/154#Slide3
https://www.adafruit.com/product/154#Slide4
https://www.adafruit.com/product/154#Slide5
http://www.arduino.cc/en/Reference/Servo
http://arduino.cc/en/Tutorial/Sweep
http://www.adafruit.com/product/167

gently adjust the potentiometer in the recessed hole with a small screwdriver until the servo

stops moving.

Note: This product no longer includes the hole to adjust the Zero point.

TECHNICAL DETAILS
Details:

Operating Voltage: 4.8V~6V (5V works best)

Average Speed: ~0.18sec/60°

Stall Torque (4.8V): 3kg.cm/41.74oz.in

Stall Torque (6V): 3.2kg.com/44.52oz.in

Required Pulse: 500us-2500us

Connector Wire Length: 30cm / 11.8"

Dimensions: 37mm x 54mm x 20mm / 1.5" x 2.1" x 0.8"

Weight (no horns): 40g

Spline Count: 25

Revision History:

As of Friday, May 8th, 2015 we're selling a revised FeeTech version with additional horns!

LEARN

New Products 5/13/2015

Adafruit 16 Channel Servo

Driver with Raspberry Pi

Adafruit PCA9685 16-

Channel Servo Driver

LSM303 Accelerometer +

Compass Breakout

Triple Axis Accelerometer and

Magnetometer (Compass)

breakout board.

Adafruit Motor Shield V2 for

Arduino

Stackable, high current DC

and Stepper motor shield for

Arduino

https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi
https://learn.adafruit.com/16-channel-pwm-servo-driver
https://learn.adafruit.com/16-channel-pwm-servo-driver
https://learn.adafruit.com/lsm303-accelerometer-slash-compass-breakout
https://learn.adafruit.com/lsm303-accelerometer-slash-compass-breakout
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino
https://www.youtube.com/watch?v=7Rt5xUbqDzA

MAY WE ALSO SUGGEST...

Modifying Servos for

Continuous Rotation

Make tiny gear-motors for

your next robot!

Adafruit Motor Selection

Guide

Choose the right motor (and

controller) for the job!

Adafruit 16-Channel

PWM/Servo HAT & Bonnet for

Raspberry Pi

16 channels of servo-bustin'

power for your Pi

Adafruit 8-Channel PWM or

Servo FeatherWing

A 8 x servo party for your

Feather!

Circuit Playground Sound-

Controlled Robot

Make your Circuit Playground

mobile and change direction

via sound

CircuitPython Hardware:

PCA9685 PWM & Servo

Driver

How to use the PCA9685

PWM & servo driver with

CircuitPython!

Using Servos With

CircuitPython and Arduino

How to use servo motors

with CircuitPython and

Arduino

Spinning Logo

Build a paper craft hack a day

logo powered by Circuit

Playground!

Continuous Rotation Servo

Wheel

Feedback 360 Degree -

High Speed Continuous

Micro Servo - High

Powered, High Torque Metal

Micro Servo - MG90S High

Torque Metal Gear

Adafruit 16-Channel 12-bit

PWM/Servo Driver - I2C

Machined Aluminum Servo

Arm

Continuous Rotation Micro

Servo

Ball Caster - 3/4" Metal Ball Servo Extension Cable -

30cm / 12" long -

https://learn.adafruit.com/modifying-servos-for-continuous-rotation
https://learn.adafruit.com/modifying-servos-for-continuous-rotation
https://learn.adafruit.com/adafruit-motor-selection-guide
https://learn.adafruit.com/adafruit-motor-selection-guide
https://learn.adafruit.com/adafruit-16-channel-pwm-servo-hat-for-raspberry-pi
https://learn.adafruit.com/adafruit-16-channel-pwm-servo-hat-for-raspberry-pi
https://learn.adafruit.com/adafruit-8-channel-pwm-or-servo-featherwing
https://learn.adafruit.com/adafruit-8-channel-pwm-or-servo-featherwing
https://learn.adafruit.com/circuit-playground-sound-controlled-robot
https://learn.adafruit.com/circuit-playground-sound-controlled-robot
https://learn.adafruit.com/micropython-hardware-pca9685-pwm-and-servo-driver
https://learn.adafruit.com/micropython-hardware-pca9685-pwm-and-servo-driver
https://learn.adafruit.com/using-servos-with-circuitpython
https://learn.adafruit.com/using-servos-with-circuitpython
https://learn.adafruit.com/spinning-logo
https://learn.adafruit.com/spinning-logo
https://www.adafruit.com/product/167
https://www.adafruit.com/product/3614
https://www.adafruit.com/product/2307
https://www.adafruit.com/product/1143
https://www.adafruit.com/product/815
https://www.adafruit.com/product/3837
https://www.adafruit.com/product/2442
https://www.adafruit.com/product/1200
https://www.adafruit.com/product/972

8-Channel PWM or Servo

FeatherWing Add-on For All

Analog Feedback Servo Standard Size - High Torque

- Metal Gear Servo

EXPAND TO SEE DISTRIBUTORSDISTRIBUTORS

CONTACT

SUPPORT

DISTRIBUTORS

EDUCATORS

JOBS

FAQ

SHIPPING & RETURNS

TERMS OF SERVICE

PRIVACY & LEGAL

ABOUT US

ENGINEERED IN NYC Adafruit ®

"Far and away the best prize that
life has to offer is the chance to
work hard at work worth doing" -
Theodore Roosevelt

4.94.9

https://www.adafruit.com/product/1200
https://www.adafruit.com/product/2928
https://www.adafruit.com/product/1404
https://www.adafruit.com/product/1142
https://www.adafruit.com/contact_us
https://www.adafruit.com/support
https://www.adafruit.com/distributors
https://www.adafruit.com/educators
https://www.adafruit.com/jobs
https://www.adafruit.com/faq
https://www.adafruit.com/shippinginfo
https://www.adafruit.com/terms_of_service
https://www.adafruit.com/privacy
https://www.adafruit.com/about
http://nytm.org/made-in-nyc/
https://en.wikipedia.org/wiki/Theodore_Roosevelt
https://verify.authorize.net/anetseal/?pid=1de2c247-f7e6-492b-99d8-fb648be79ff1&rurl=https%3A//www.adafruit.com/product/154
https://verify.authorize.net/anetseal/?pid=1de2c247-f7e6-492b-99d8-fb648be79ff1&rurl=https%3A//www.adafruit.com/product/154
https://www.google.com/shopping/ratings/account/metrics?q=adafruit.com&c=GLOBAL&v=1&hl=en_US
https://www.google.com/shopping/ratings/account/metrics?q=adafruit.com&c=GLOBAL&v=1&hl=en_US

12/20/21, 7:23 PM Teensy Technical Specs Comparision Table

https://www.pjrc.com/teensy/techspecs.html 1/2

Shopping Cart Download Website

Home Products Teensy Blog Forum
You are here: Teensy Hardware Tech Specs

PJRC Store
 Teensy 4.1, $26.85
 Teensy 4.0, $19.95
 Teensy 3.6, $29.25
 Teensy 3.5, $24.25
 Teensy 3.2, $19.80
 Teensy LC, $11.65
 Teensy 2.0, $16.00

Teensy
 Main Page
 Hardware

 Tech Specs
 Teensy 3.2 / 3.1
 Teensy-LC

 Getting Started
 Tutorial
 How-To Tips
 Code Library
 Projects
 Teensyduino
 Reference

Teensy Technical Specifications

Feature Teensy
 2.0

Teensy++
 2.0

Teensy
 LC

Teensy
 3.2

Teensy
 3.5

Teensy
 3.6

Teensy
 4.0

Teensy
 4.1 Units

Price $16.00 $24.00 $11.65 $19.80 $24.25 $29.25 $19.95 $26.85 US Dollars

Processor
 Core

 FPU
 Rated Speed

 Overclockable

ATMEGA32U4
 AVR

 -
 16
 -

AT90USB1286
 AVR

 -
 16
 -

MKL26Z64VFT4
 Cortex-M0+

-
 48
 -

MK20DX256VLH7
 Cortex-M4

 -
 72
 96

MK64FX512VMD12
 Cortex-M4F

 32
 120
 -

MK66FX1M0VMD18
 Cortex-M4F

 32
 180
 240

IMXRT1062DVL6
 Cortex-M7

 32 & 64
 600

 912

IMXRT1062DVJ6
 Cortex-M7

 32 & 64
 600

 912

bits
 MHz
 MHz

Flash Memory
 Bandwidth

 Cache

31.5
 32

 -

127
 32

 -

62
 96
 64

256
 192
 256

512
 192
 256

1024
 411

 8192

1984
 66

 65536

7936
 66

 65536

kbytes
 Mbytes/sec

 Bytes

RAM 2.5 8 8 64 256 256 1024 1024 kbytes

EEPROM 1024 4096 128 (emu) 2048 4096 4096 1080 (emu) 4284 (emu) bytes

Direct Memory Access - - 4 16 16 32 32 32 Channels

Digital I/O
 Breadboard I/O

 Voltage Output
 Current Output
 Voltage Input

 Interrupts

25
 22
 5V
 20mA

 5V
 4

46
 36
 5V
 20mA

 5V
 8

27
 24
 3.3V / 5V

 5mA / 20mA
 3.3V Only

 18

34
 24
 3.3V
 10mA
 5V Tolerant

 34

58
 40+2

 3.3V
 10mA
 5V Tolerant

 58

58
 40+2

 3.3V
 10mA
 3.3V Only

 58

40
 24
 3.3V
 10mA
 3.3V Only

 40

55
 42
 3.3V
 10mA
 3.3V Only

 55

Pins
 Pins
 Volts
 milliAmps

 Volts
 Pins

Analog Input
 Converters
 Usable Resolution

 Prog Gain Amp
 Touch Sensing

 Comparators

12
 1

 10
 1

 -
 1

8
 1
 10
 1

 -
 1

13
 1

 12
 -

 11
 1

21
 2

 13
 2

 12
 3

27
 2

 13
 -

 -
 3

25
 2

 13
 -

 11
 4

14
 2

 10
 -

 -
 4

18
 2

 10
 -

 -
 4

Pins

Bits

Pins

Analog Output
 DAC Resolution

-
 -

-
 -

1
 12

1
 12

2
 12

2
 12

-
 -

-
 -

Pins
 Bits

Timers
 PWM, 32 bit

 PWM, 16 bit
 PWM, 8-10 bit

 Total PWM Outputs
 PDB Type

 CMT Type
 Quadrature Enc

 LPTMR Type
 PIT/Interval

 IEEE1588
 Systick

 RTC

4 Total
 -

 2
 2
 7
 -
 -
 -
 -
 -
 -
 -
 -

4 Total
 -

 2
 2
 9
 -
 -
 -
 -
 -
 -
 -
 -

7 Total
 -

 3
 -
 10
 -

 -
 -
 1
 2
 -
 1
 0 **

12 Total
 -

 3
 -
 12
 1

 1
 -
 1
 4
 -
 1
 1 **

17 Total
 -

 4
 -
 20
 1

 1
 -
 1
 4
 4
 1
 1

19 Total
 -

 6
 -
 22
 1

 1
 -
 1
 4
 4
 1
 1

49 Total
 3

 32
 -

 27
 -

 -
 4
 -
 4
 4
 1
 1

49 Total
 3

 32
 -

 31
 -

 -
 4
 -
 4
 4
 1
 1

Pins

Communication
 USB

 Serial
 With FIFOs

 High Res Baud
 SPI

 With FIFOs
 I2C

 CAN Bus
 With CAN-FD

 Digital Audio In
 Digital Audio Out

 S/PDIF Input
 S/PDIF Output

 MQS Output
 SD Card

 Ethernet

1
 1
 -
 -
 1
 -
 1
 -
 -
 -
 -
 -
 -
 -
 -
 -

1
 1
 -
 -
 1
 -
 1
 -
 -
 -
 -
 -
 -
 -
 -
 -

1
 3
 -
 -
 2
 1
 2
 -
 -
 1
 1
 -
 -
 -
 -
 -

1
 3
 2
 3
 1
 1
 2
 1
 -
 2
 2
 -
 0*
 -

 -
 -

1
 6
 2
 6
 3
 1
 3
 1
 -
 2
 2
 -
 0*
 -

 1
 1*

2
 6
 2
 5
 3
 1
 4
 2
 -
 2
 2
 -
 0*
 -

 1
 1*

2
 7
 7
 -
 2
 2
 3
 3
 1
 5*
 5*
 1
 1
 1
 1*
 -

2
 8
 8
 -
 2
 2
 3
 3
 1
 5*
 5*
 1
 1
 1
 1
 1

stereo pins
 stereo pins

uu

https://www.pjrc.com/
https://www.pjrc.com/cart/cart.php
https://www.pjrc.com/cgi-bin/archive/summary
https://www.pjrc.com/
https://www.pjrc.com/store/
https://www.pjrc.com/teensy/
https://www.pjrc.com/blog/
https://forum.pjrc.com/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/techspecs.html
https://www.pjrc.com/store/teensy41.html
https://www.pjrc.com/store/teensy40.html
https://www.pjrc.com/store/teensy36.html
https://www.pjrc.com/store/teensy35.html
https://www.pjrc.com/store/teensy32.html
https://www.pjrc.com/store/teensylc.html
https://www.pjrc.com/store/teensy.html
https://www.pjrc.com/teensy/index.html
https://www.pjrc.com/teensy/teensy31.html
https://www.pjrc.com/teensy/teensyLC.html
https://www.pjrc.com/teensy/first_use.html
https://www.pjrc.com/teensy/tutorial.html
https://www.pjrc.com/teensy/pins.html
https://www.pjrc.com/teensy/usb_debug_only.html
https://www.pjrc.com/teensy/projects.html
https://www.pjrc.com/teensy/teensyduino.html
https://www.pjrc.com/teensy/pinout.html
https://www.pjrc.com/store/teensy.html
https://www.pjrc.com/store/teensypp.html
https://www.pjrc.com/store/teensylc.html
https://www.pjrc.com/store/teensy32.html
https://www.pjrc.com/store/teensy35.html
https://www.pjrc.com/store/teensy36.html
https://www.pjrc.com/store/teensy40.html
https://www.pjrc.com/store/teensy41.html

